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Abstract. An inverse of the recursion operator is computed and a clear presentation of a tri-
Hamiltonian formulation is provided for a Kaup–Newell system of derivative nonlinear Schrödinger
(DNLS) equations. Therefore all Kaup–Newell systems in the whole hierarchy of DNLS equations
are tri-Hamiltonian and have an inverse hierarchy of common commuting symmetries.

The Kaup–Newell system of derivative nonlinear Schrödinger (DNLS) equations:

ut =
(
qt
rt

)
= K(u) = 1

2

(
qxx − (q2r)x
−rxx − (qr2)x

)
(1)

is a system of typical soliton equations. This system originates from an investigation on
a derivative nonlinear Schrödinger equation and the massive Thirring model by Kaup and
Newell [1,2]. It is found that it has a Lax pair [3]

U =
(
λ q

λr −λ
)

V =
(

λ2 − 1
2λqr λq + 1

2(qx − q2r)

λ2r − 1
2λ(rx + qr2) −λ2 + 1

2λqr

)
with λ being a spectral parameter. The spectral matrix operatorU is different from the original
one in [1,2] but it can still generate the whole Kaup–Newell hierarchy of DNLS equations [3]. It
follows that the Kaup–Newell system (1) may equivalently be derived from the zero-curvature
equation

Ut − Vx + [U,V ] = 0

under the isospectral conditionλt = 0, and it is already shown that the Kaup–Newell system
(1) possesses a hereditary recursion operator (see, for example, [3])

8 =
( 1

2∂ − 1
2∂q∂

−1r − 1
2∂q∂

−1q

− 1
2∂r∂

−1r − 1
2∂ − 1

2∂r∂
−1q

)
∂∂−1 = ∂−1∂ = 1 ∂ = ∂

∂x
. (2)

In this letter, we want to give an explicit inverse of the recursion operator8 defined by
(2) and to provide a clear presentation of a tri-Hamiltonian formulation for the Kaup–Newell
system of DNLS equations (1). Therefore, the Kaup–Newell system (1) will provide an
example of tri-Hamiltonian systems, among which the well known examples are the coupled
KdV systems [4], the Toda lattice [5] and the Volterra lattice [6].
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Let us start from a set of Hamiltonian operators

J (α) =
( −2q∂−1q 2 +α∂ + 2q∂−1r

−2 +α∂ + 2r∂−1q −2r∂−1r

)
(3)

whereα can be any constant. These operators are a simple generalization of the AKNS case [7].
The proof thatJ (α) is Hamiltonian is a rather laborious computation but it is direct and similar
to the AKNS case. A special choice leads to a Hamiltonian pair

J0 =
( −2q∂−1q 2 + 2q∂−1r

−2 + 2r∂−1q −2r∂−1r

)
J1 =

(
0 ∂

∂ 0

)
. (4)

Importantly, by inspection, we can neatly present the inverse operator ofJ0:

J−1
0 = −

1

2

(
r∂−1r 1 + r∂−1q

−1 +q∂−1r q∂−1q

)
which can now be shown by checking thatJ0J

−1
0 = J−1

0 J0 = I2 (I2 being the 2× 2 identity
matrix). Therefore the above Hamiltonian pair engenders [8] a hereditary symmetry operator
8 = J1J

−1
0 which is exactly the same as the hereditary recursion operator defined by (2). Now

the inverse of the recursion operator8, which is still a hereditary recursion operator for the
Kaup–Newell system (1) (see [9], for example), is determined by

8−1 = J0J
−1
1 =

(
2∂−1 + 2q∂−1r∂−1 −2q∂−1q∂−1

−2r∂−1r∂−1 −2∂−1 + 2r∂−1q∂−1

)
. (5)

This provides us with an explicit and nice expression for the inverse of the recursion operator
8. Such nice expressions of inverses of recursion operators have not been found in the cases
of the AKNS hierarchy and the Jaulent–Miodek hierarchy, for which special eigenfunctions
of the related spectral problems are involved in the construction of inverses of recursion
operators [10, 11]. A general theory on Hamiltonian operators and Hamiltonian pairs can
be found in [12–14]. Within our discussion, we just pick out a set of specific Hamiltonian
operators from (3) for our purpose. Actually, other types of hereditary operators may also be
constructed [15].

Let us now assume that

J2 = 8J1 =
( − 1

2∂q∂
−1q∂ 1

2∂
2 − 1

2∂q∂
−1r∂

− 1
2∂

2 − 1
2∂r∂

−1q∂ − 1
2∂r∂

−1r∂

)
(6)

and then three operatorsJ0, J1 = 8J0 andJ2 = 82J0 constitute a Hamiltonian triple, which
means that any linear combination ofJ0, J1 = 8J0 andJ2 = 8J1 is again Hamiltonian. This
is a consequence of a Hamiltonian pair with an invertible Hamiltonian operator.

Now we are ready to give a clear presentation of a tri-Hamiltonian formulation for the
Kaup–Newell system of DNLS equations (1). The tri-Hamiltonian formulation that we are
looking for reads as

ut = K(u) = J0
δH̃2

δu
= J1

δH̃1

δu
= J2

δH̃0

δu
(7)

where three Hamiltonian functionals are given byH̃i =
∫
Hi dx, 06 i 6 2, with{

H0 = qr H1 = − 1
4q

2r2 − 1
4qrx + 1

4qxr

H2 = 1
16qxxr + 1

16qrxx − 1
8qxrx + 3

16q
2rrx − 3

16qqxr
2 + 1

8q
3r3 (8)

and as usual, the variational derivative of a functionalH̃ = ∫ H dx is defined by

δH̃

δu
=
(
δH̃

δq
,
δH̃

δr

)T
δH̃

δq
=
∑
i>0

(−∂)i ∂H
∂q(i)
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δH̃

δr
=
∑
i>0

(−∂)i ∂H
∂r(i)

q(i) = ∂iq

∂xi
r(i) = ∂ir

∂xi
.

The above functionsH0, H1 andH2 are all conserved densities of the Kaup–Newell system
(1). The proof of the tri-Hamiltonian formulation (7) just needs a direct computation. The
second Hamiltonian formulation is easy to discern, because a special constant coefficient and
skew-symmetric differential operator is taken as the Hamiltonian operator. The third one is
a direct consequence of the recursion structure of the Kaup–Newell hierarchy. However the
first Hamiltonian structure is not so obvious. The success in getting it here is a decomposition
J1 = 8J0 designed for the simple Hamiltonian operatorJ1. The above three Hamiltonian
operatorsJ0, J1 andJ2 go from complicated through simple to complicated structures. This is
different from the normal case from simple to complicated structures (see, for example, [4,5]).
We point out that parts of the tri-Hamiltonian formulation (7) were also discussed from different
points of view in [16–19], but there was neither a clear presentation of the whole tri-Hamiltonian
formulation (7), nor the proof or statement on the compatibility of all three operatorsJ0, J1

andJ2, i.e., the Hamiltonian property ofc0J0 + c1J1 + c2J2 with arbitrary constantsc0, c1 and
c2, for presenting the tri-Hamiltonian formulation of (1).

Based on the Magri’s scheme of bi-Hamiltonian formulation [12], it follows from (7) that
each nonlinear Kaup–Newell system of DNLS equations among the hierarchy

ut = Kn = 8nux n > 0 (9)

has a tri-Hamiltonian formulation

ut = Kn = J0
δH̃n−1

δu
= J1

δH̃n

δu
= J2

δH̃n+1

δu
n > 1 (10)

the first nonlinear system of which is exactly the Kaup–Newell system (1). The existence of
all Hamiltonian functionalsH̃n is guaranteed by a specific pair of Hamiltonian operatorsJ0

andJ1 defined by (4). In fact, they can be computed as follows:

H̃n =
∫
Hn dx Hn =

∫ 1

0
uTGn(λu) dλ Gn(u) = 9n

(
r

q

)
n > 0 (11)

whereT means the transpose of matrices and9 is the conjugate operator8† of 8.
Since8 and8−1 are all hereditary, it is easy to obtain

[Km,Kn] := ∂

∂ε

∣∣∣∣
ε=0

(Km(u + εKn)−Kn(u + εKm)) = 0 Kn = 8nux, m, n ∈ Z.

Therefore, through the inverse operator8−1 given by (5), an inverse hierarchy of common
commuting symmetries can be computed as follows:

ut = K−n = 8−nux n > 1 (12)

the first and the second of which are(
qt
rt

)
=
(

2q
−2r

) (
qt
rt

)
=
(

4∂−1q + 4q∂−1r∂−1q + 4q∂−1q∂−1r

4∂−1r − 4r∂−1r∂−1q − 4r∂−1q∂−1r

)
.

The second symmetry system is nonlocal and so are the other nonlinear symmetries in the
inverse hierarchy (12). Nevertheless, the explicit expression (5) of the inverse of the hereditary
recursion operator8 brings us a great convenience to present the inverse hierarchy [20] of
commuting symmetries.

Finally, we remark that a Hamiltonian pair with an invertible operator can provide a
quadruple (and even more multiple) of Hamiltonian operators [8]. For example, in our case,
we can have a quadruple of Hamiltonian operatorsJ0,8J0,8

2J0 and83J0, which means that
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all operatorsc0J0 + c18J0 + c28
2J0 + c38

3J0 with arbitrary constantsc0, c1, c2 andc3 are
Hamiltonian. However, we conjecture that there is no quadruple Hamiltonian formulation with
four Hamiltonian operatorsJ0,8J0,8

2J0 and83J0 and four local Hamiltonian functionals for
the Kaup–Newell system of DNLS equations (1), but we have no idea whether there exist other
quadruple Hamiltonian formulations with local Hamiltonian functionals for the Kaup–Newell
system of DNLS equations (1).
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